Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
2.
New Phytol ; 240(5): 1830-1847, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37743731

ABSTRACT

Flooding represents a major threat to global agricultural productivity and food security, but plants are capable of deploying a suite of adaptive responses that can lead to short- or longer-term survival to this stress. One cellular pathway thought to help coordinate these responses is via flooding-triggered Ca2+ signaling. We have mined publicly available transcriptomic data from Arabidopsis subjected to flooding or low oxygen stress to identify rapidly upregulated, Ca2+ -related transcripts. We then focused on transporters likely to modulate Ca2+ signals. Candidates emerging from this analysis included AUTOINHIBITED Ca2+ ATPASE 1 and CATION EXCHANGER 2. We therefore assayed mutants in these genes for flooding sensitivity at levels from growth to patterns of gene expression and the kinetics of flooding-related Ca2+ changes. Knockout mutants in CAX2 especially showed enhanced survival to soil waterlogging coupled with suppressed induction of many marker genes for hypoxic response and constitutive activation of others. CAX2 mutants also generated larger and more sustained Ca2+ signals in response to both flooding and hypoxic challenges. CAX2 is a Ca2+ transporter located on the tonoplast, and so these results are consistent with an important role for vacuolar Ca2+ transport in the signaling systems that trigger flooding response.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cation Transport Proteins , Antiporters/genetics , Antiporters/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calcium/metabolism , Calcium Signaling , Cation Transport Proteins/metabolism , Cations/metabolism , Gene Expression Regulation, Plant , Homeostasis
3.
Plant Physiol ; 191(4): 2276-2287, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36708195

ABSTRACT

A potential strategy to mitigate oxidative damage in plants is to increase the abundance of antioxidants, such as ascorbate (i.e. vitamin C). In Arabidopsis (A. thaliana), a rate-limiting step in ascorbate biosynthesis is a phosphorylase encoded by Vitamin C Defective 2 (VTC2). To specifically overexpress VTC2 (VTC2 OE) in pollen, the coding region was expressed using a promoter from a gene with ∼150-fold higher expression in pollen, leading to pollen grains with an eight-fold increased VTC2 mRNA. VTC2 OE resulted in a near-sterile phenotype with a 50-fold decrease in pollen transmission efficiency and a five-fold reduction in the number of seeds per silique. In vitro assays revealed pollen grains were more prone to bursting (greater than two-fold) or produced shorter, morphologically abnormal pollen tubes. The inclusion of a genetically encoded Ca2+ reporter, mCherry-GCaMP6fast (CGf), revealed pollen tubes with altered tip-focused Ca2+ dynamics and increased bursting frequency during periods of oscillatory and arrested growth. Despite these phenotypes, VTC2 OE pollen failed to show expected increases in ascorbate or reductions in reactive oxygen species, as measured using a redox-sensitive dye or a roGFP2. However, mRNA expression analyses revealed greater than two-fold reductions in mRNA encoding two enzymes critical to biosynthetic pathways related to cell walls or glyco-modifications of lipids and proteins: GDP-d-mannose pyrophosphorylase (GMP) and GDP-d-mannose 3',5' epimerase (GME). These results support a model in which the near-sterile defects resulting from VTC2 OE in pollen are associated with feedback mechanisms that can alter one or more signaling or metabolic pathways critical to pollen tube growth and fertility.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Calcium Signaling , Pollen , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Fertility/genetics , Calcium Signaling/genetics , Gene Expression , Pollen/enzymology , Pollen/genetics , Pollen Tube/enzymology , Pollen Tube/genetics , Promoter Regions, Genetic/genetics
4.
Sci Total Environ ; 851(Pt 1): 158101, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-35987220

ABSTRACT

Atmospheric elemental mercury (Hg(0)) enters plant stomata, becomes oxidized, and is then transferred to annual growth rings providing an archive of air Hg(0) concentrations. To better understand the processes of Hg accumulation and translocation, the foliage of quaking aspen and Austrian pine were exposed to Hg(0), and methylmercury (MeHg) or Me198Hg via roots, in controlled exposures during the summer. Isotopic measurements demonstrated, in a laboratory setting, that the natural mass-dependent fractionation observed was the same as that measured in field studies, with the lighter isotopes being preferentially taken up by the leaves. Hg was measured in plant tissues across seasons. Aspen trees moved Hg into new growth immediately after exposure, resorbed Hg in the fall, and then distributed Hg to new growth tissues in the spring. Austrian pine did not reallocate Hg. Mercury measured in aspen leaf fractions of trees exposed to Hg(0) demonstrated that 85 % of Hg was in the cell wall. It was also found that redox-active molecules, such as H2O2, could potentiate the release of cell wall-bound Hg from aspen leaves, providing a potential mechanism for remobilization. Regardless of the mechanism, the ability of aspen to reallocate Hg to new tissues indicates that Hg distribution in tree rings from aspen do not provide a reliable record of yearly changes in atmospheric Hg(0).


Subject(s)
Mercury , Methylmercury Compounds , Pinus , Environmental Monitoring , Hydrogen Peroxide , Isotopes , Mercury/analysis , Mercury Isotopes
5.
Plant Physiol ; 187(4): 2262-2278, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34890456

ABSTRACT

Under anaerobic stress, Arabidopsis thaliana induces the expression of a collection of core hypoxia genes that encode proteins for an adaptive response. Among these genes is NIP2;1, which encodes a member of the "Nodulin 26-like Intrinsic Protein" (NIP) subgroup of the aquaporin superfamily of membrane channel proteins. NIP2;1 expression is limited to the "anoxia core" region of the root stele under normal growth conditions, but shows substantial induction (up to 1,000-fold by 2-4 h of hypoxia) by low oxygen stress, and accumulation in all root tissues. During hypoxia, NIP2;1-GFP accumulates predominantly on the plasma membrane by 2 h, is distributed between the plasma and internal membranes during sustained hypoxia, and remains elevated in root tissues through 4 h of reoxygenation recovery. In response to hypoxia challenge, T-DNA insertion mutant nip2;1 plants exhibit elevated lactic acid within root tissues, reduced efflux of lactic acid, and reduced acidification of the external medium compared to wild-type plants. Previous biochemical evidence demonstrates that NIP2;1 has lactic acid channel activity, and our work supports the hypothesis that NIP2;1 prevents lactic acid toxicity by facilitating release of cellular lactic acid from the cytosol to the apoplast, supporting eventual efflux to the rhizosphere. In evidence, nip2;1 plants demonstrate poorer survival during argon-induced hypoxia stress. Expressions of the ethanolic fermentation transcript Alcohol Dehydrogenase1 and the core hypoxia-induced transcript Alanine Aminotransferase1 are elevated in nip2;1, and expression of the Glycolate Oxidase3 transcript is reduced, suggesting NIP2;1 lactic acid efflux regulates other pyruvate and lactate metabolism pathways.


Subject(s)
Adaptation, Physiological/genetics , Aquaporins/genetics , Aquaporins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Hypoxia/metabolism , Lactic Acid/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Hypoxia/genetics , Plants, Genetically Modified
6.
Plants (Basel) ; 10(2)2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33671904

ABSTRACT

In natural ecosystems, plants are constantly exposed to changes in their surroundings as they grow, caused by a lifestyle that requires them to live where their seeds fall. Thus, plants strive to adapt and respond to changes in their exposed environment that change every moment. Heat stress that naturally occurs when plants grow in the summer or a tropical area adversely affects plants' growth and poses a risk to plant development. When plants are subjected to heat stress, they recognize heat stress and respond using highly complex intracellular signaling systems such as reactive oxygen species (ROS). ROS was previously considered a byproduct that impairs plant growth. However, in recent studies, ROS gained attention for its function as a signaling molecule when plants respond to environmental stresses such as heat stress. In particular, ROS, produced in response to heat stress in various plant cell compartments such as mitochondria and chloroplasts, plays a crucial role as a signaling molecule that promotes plant growth and triggers subsequent downstream reactions. Therefore, this review aims to address the latest research trends and understandings, focusing on the function and role of ROS in responding and adapting plants to heat stress.

7.
Plant Physiol ; 185(4): 1966-1985, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33575795

ABSTRACT

Generating cellular Ca2+ signals requires coordinated transport activities from both Ca2+ influx and efflux pathways. In Arabidopsis (Arabidopsis thaliana), multiple efflux pathways exist, some of which involve Ca2+-pumps belonging to the Autoinhibited Ca2+-ATPase (ACA) family. Here, we show that ACA1, 2, and 7 localize to the endoplasmic reticulum (ER) and are important for plant growth and pollen fertility. While phenotypes for plants harboring single-gene knockouts (KOs) were weak or undetected, a triple KO of aca1/2/7 displayed a 2.6-fold decrease in pollen transmission efficiency, whereas inheritance through female gametes was normal. The triple KO also resulted in smaller rosettes showing a high frequency of lesions. Both vegetative and reproductive phenotypes were rescued by transgenes encoding either ACA1, 2, or 7, suggesting that all three isoforms are biochemically redundant. Lesions were suppressed by expression of a transgene encoding NahG, an enzyme that degrades salicylic acid (SA). Triple KO mutants showed elevated mRNA expression for two SA-inducible marker genes, Pathogenesis-related1 (PR1) and PR2. The aca1/2/7 lesion phenotype was similar but less severe than SA-dependent lesions associated with a double KO of vacuolar pumps aca4 and 11. Imaging of Ca2+ dynamics triggered by blue light or the pathogen elicitor flg22 revealed that aca1/2/7 mutants display Ca2+ transients with increased magnitudes and durations. Together, these results indicate that ER-localized ACAs play important roles in regulating Ca2+ signals, and that the loss of these pumps results in male fertility and vegetative growth deficiencies.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis/metabolism , Calcium-Transporting ATPases/metabolism , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Pollen/growth & development , Pollen/metabolism , Endoplasmic Reticulum/genetics , Gene Expression Regulation, Plant , Genes, Plant , Plant Development , Pollen/genetics
8.
Front Plant Sci ; 12: 777975, 2021.
Article in English | MEDLINE | ID: mdl-34975960

ABSTRACT

Land plants evolved to quickly sense and adapt to temperature changes, such as hot days and cold nights. Given that calcium (Ca2+) signaling networks are implicated in most abiotic stress responses, heat-triggered changes in cytosolic Ca2+ were investigated in Arabidopsis leaves and pollen. Plants were engineered with a reporter called CGf, a ratiometric, genetically encoded Ca2+ reporter with an mCherry reference domain fused to an intensiometric Ca2+ reporter GCaMP6f. Relative changes in [Ca2+]cyt were estimated based on CGf's apparent K D around 220 nM. The ratiometric output provided an opportunity to compare Ca2+ dynamics between different tissues, cell types, or subcellular locations. In leaves, CGf detected heat-triggered cytosolic Ca2+ signals, comprised of three different signatures showing similarly rapid rates of Ca2+ influx followed by differing rates of efflux (50% durations ranging from 5 to 19 min). These heat-triggered Ca2+ signals were approximately 1.5-fold greater in magnitude than blue light-triggered signals in the same leaves. In contrast, growing pollen tubes showed two different heat-triggered responses. Exposure to heat caused tip-focused steady growth [Ca2+]cyt oscillations to shift to a pattern characteristic of a growth arrest (22%), or an almost undetectable [Ca2+]cyt (78%). Together, these contrasting examples of heat-triggered Ca2+ responses in leaves and pollen highlight the diversity of Ca2+ signals in plants, inviting speculations about their differing kinetic features and biological functions.

9.
Front Plant Sci ; 10: 101, 2019.
Article in English | MEDLINE | ID: mdl-30804970

ABSTRACT

Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that exploits a temporal CO2 pump with nocturnal CO2 uptake and concentration to reduce photorespiration, improve water-use efficiency (WUE), and optimize the adaptability of plants to hotter and drier climates. Introducing the CAM photosynthetic machinery into C3 (or C4) photosynthesis plants (CAM Biodesign) represents a potentially breakthrough strategy for improving WUE while maintaining high productivity. To optimize the success of CAM Biodesign approaches, the functional analysis of individual C4 metabolism cycle genes is necessary to identify the essential genes for robust CAM pathway introduction. Here, we isolated and analyzed the subcellular localizations of 13 enzymes and regulatory proteins of the C4 metabolism cycle of CAM from the common ice plant in stably transformed Arabidopsis thaliana. Six components of the carboxylation module were analyzed including beta-carbonic anhydrase (McBCA2), phosphoenolpyruvate carboxylase (McPEPC1), phosphoenolpyruvate carboxylase kinase (McPPCK1), NAD-dependent malate dehydrogenase (McNAD-MDH1, McNAD-MDH2), and NADP-dependent malate dehydrogenase (McNADP-MDH1). In addition, seven components of the decarboxylation module were analyzed including NAD-dependent malic enzyme (McNAD-ME1, McNAD-ME2), NADP-dependent malic enzyme (McNADP-ME1, NADP-ME2), pyruvate, orthophosphate dikinase (McPPDK), pyruvate, orthophosphate dikinase-regulatory protein (McPPDK-RP), and phosphoenolpyruvate carboxykinase (McPEPCK). Ectopic overexpression of most C4-metabolism cycle components resulted in increased rosette diameter, leaf area, and leaf fresh weight of A. thaliana except for McNADP-MDH1, McPPDK-RP, and McPEPCK. Overexpression of most carboxylation module components resulted in increased stomatal conductance and dawn/dusk titratable acidity (TA) as an indirect measure of organic acid (mainly malate) accumulation in A. thaliana. In contrast, overexpression of the decarboxylating malic enzymes reduced stomatal conductance and TA. This comprehensive study provides fundamental insights into the relative functional contributions of each of the individual components of the core C4-metabolism cycle of CAM and represents a critical first step in laying the foundation for CAM Biodesign.

10.
Am J Bot ; 106(1): 123-136, 2019 01.
Article in English | MEDLINE | ID: mdl-30644539

ABSTRACT

PREMISE OF THE STUDY: Spaceflight provides a unique environment in which to dissect plant stress response behaviors and to reveal potentially novel pathways triggered in space. We therefore analyzed the transcriptomes of Arabidopsis thaliana plants grown on board the International Space Station to find the molecular fingerprints of these space-related response networks. METHODS: Four ecotypes (Col-0, Ws-2, Ler-0 and Cvi-0) were grown on orbit and then their patterns of transcript abundance compared to ground-based controls using RNA sequencing. KEY RESULTS: Transcripts from heat-shock proteins were upregulated in all ecotypes in spaceflight, whereas peroxidase transcripts were downregulated. Among the shared and ecotype-specific changes, gene classes related to oxidative stress and hypoxia were detected. These spaceflight transcriptional response signatures could be partly mimicked on Earth by a low oxygen environment and more fully by oxidative stress (H2 O2 ) treatments. CONCLUSIONS: These results suggest that the spaceflight environment is associated with oxidative stress potentially triggered, in part, by hypoxic response. Further, a shared spaceflight response may be through the induction of molecular chaperones (such as heat shock proteins) that help protect cellular machinery from the effects of oxidative damage. In addition, this research emphasizes the importance of considering the effects of natural variation when designing and interpreting changes associated with spaceflight experiments.


Subject(s)
Arabidopsis/metabolism , Oxidative Stress , Space Flight , Transcriptome , Ecotype , Gene Expression Regulation, Plant , Heat-Shock Response , Peroxidase/metabolism
11.
Physiol Plant ; 165(2): 356-368, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30411793

ABSTRACT

While the accumulation of reactive oxygen species (ROS) through spontaneous generation or as the by-products of aerobic metabolism can be toxic to plants, recent findings demonstrate that ROS act as signaling molecules that play a critical role in adapting to various stress conditions. Tight regulation of ROS homeostasis is required to adapt to stress and survive, yet in vivo spatiotemporal information of ROS dynamics are still largely undefined. In order to understand the dynamics of ROS changes and their biological function in adapting to stresses, two quantitative ROS transcription-based bioreporters were developed. These reporters use ROS-responsive promoters from RBOHD or ZAT12 to drive green fluorescent protein (GFP) expression. The resulting GFP expression is compared to a constitutively expressed mCherry that is contained on the same cassette with the ROS-responsive promoter: This allows for the generation of ratiometric images comparing ROS changes (GFP) to the constitutively expressed mCherry. Both reporters were used to assess ROS levels to oxidative stress, salt stress, and the pathogen defense elicitor flg22. These bioreporters showed increases in the ratio values of GFP to mCherry signals between 10 and 30 min poststress application. Such stress-associated ROS signals correlated with the induction of abiotic/biotic stress responsive markers such as RbohD, ZAT12, SOS2 and PR5 suggesting these ROS bioreporters provide a robust indicator of increased ROS related to stress responses. Based upon the spatiotemporal response patterns of signal increase, ZAT12 promoter-dependent ROS (Zat12p-ROS) bioreporter appears to be suitable for cellular mapping of ROS changes in response to abiotic and biotic stresses.


Subject(s)
Arabidopsis/physiology , Reactive Oxygen Species/metabolism , Stress, Physiological/physiology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Biomarkers/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Oxidative Stress , Plants, Genetically Modified , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Salt Stress , Seedlings/physiology
12.
Plant Physiol ; 178(3): 1269-1283, 2018 11.
Article in English | MEDLINE | ID: mdl-30266747

ABSTRACT

Boron is an essential plant micronutrient that plays a structural role in the rhamnogalacturonan II component of the pectic cell wall. To prevent boron deficiency under limiting conditions, its uptake, distribution, and homeostasis are mediated by boric acid transporters and channel proteins. Among the membrane channels that facilitate boric acid uptake are the type II nodulin intrinsic protein (NIP) subfamily of aquaporin-like proteins. Arabidopsis (Arabidopsis thaliana) possesses three NIP II genes (NIP5;1, NIP6;1, and NIP7;1) that show distinct tissue expression profiles (predominantly expressed in roots, stem nodes, and developing flowers, respectively). Orthologs of each are represented in all dicots. Here, we show that purified and reconstituted NIP7;1 is a boric acid facilitator. By using native promoter-reporter fusions, we show that NIP7;1 is expressed predominantly in anthers of young flowers in a narrow developmental window, floral stages 9 and 10, with protein accumulation solely within tapetum cells, where it is localized to the plasma membrane. Under limiting boric acid conditions, loss-of-function T-DNA mutants (nip7;1-1 and nip7;1-2) show reduced fertility, including shorter siliques and an increase in aborted seeds, compared with the wild type. Under these conditions, nip7;1 mutant pollen grains show morphological defects, increased aggregation, defective exine cell wall formation, reduced germination frequency, and decreased viability. During stages 9 and 10, the tapetum is essential for supplying materials to the pollen microspore cell wall. We propose that NIP7;1 serves as a gated boric acid channel in developing anthers that aids in the uptake of this critical micronutrient by tapetal cells.


Subject(s)
Aquaporins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Boric Acids/metabolism , Gametogenesis, Plant/genetics , Pollen/genetics , Aquaporins/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Biological Transport , Boron/metabolism , Cell Membrane/metabolism , Cell Wall/metabolism , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Models, Molecular , Mutation , Phylogeny , Pollen/growth & development , Pollen/metabolism , Promoter Regions, Genetic/genetics , Recombinant Fusion Proteins
13.
Curr Opin Plant Biol ; 46: 32-38, 2018 12.
Article in English | MEDLINE | ID: mdl-30041101

ABSTRACT

Fluorescent protein-based biosensors are providing us with an unprecedented, quantitative view of the dynamic nature of the cellular networks that lie at the heart of plant biology. Such bioreporters can visualize the spatial and temporal kinetics of cellular regulators such as Ca2+ and H+, plant hormones and even allow membrane transport activities to be monitored in real time in living plant cells. The fast pace of their development is making these tools increasingly sensitive and easy to use and the rapidly expanding biosensor toolkit offers great potential for new insights into a wide range of plant regulatory processes. We suggest a checklist of controls that should help avoid some of the more cryptic issues with using these bioreporter technologies.


Subject(s)
Biosensing Techniques/methods , Green Fluorescent Proteins/genetics , Plant Proteins/genetics , Plants/genetics , Calcium/analysis , Calcium/metabolism , Green Fluorescent Proteins/metabolism , Plant Proteins/metabolism , Plants/metabolism , Plants, Genetically Modified , Recombinant Proteins/genetics
14.
Oecologia ; 186(3): 703-710, 2018 03.
Article in English | MEDLINE | ID: mdl-29340758

ABSTRACT

Although induced defenses are widespread in plants, the degree to which plants respond to herbivore kairomones (incidental chemicals that herbivores produce independent of herbivory), the costs and benefits of responding to cues of herbivory risk, and the ecological consequences of induced defenses remain unclear. We demonstrate that undamaged tomatoes, Solanum lycopersicum, induce defenses in response to a kairomone (locomotion mucus) of snail herbivores (Helix aspersa). Induced defense had significant costs and benefits for plants: plants exposed to snail mucus or a standard defense elicitor (methyl jasmonate, MeJA) exhibited slower growth, but also experienced less herbivory by an insect herbivore (Spodoptera exigua). We also find that kairomones from molluscan herbivores lead to deleterious effects on insect herbivores mediated through changes in plant defense, i.e., mucus-induced defenses of Solanum lycopersicum-reduced growth of S. exigua. These results suggest that incidental cues of widespread generalist herbivores might be a mechanism creating variation in plant growth, plant defense, and biotic interactions.


Subject(s)
Herbivory , Solanum lycopersicum , Animals , Cues , Plant Development , Spodoptera
15.
Nanoscale Res Lett ; 13(1): 9, 2018 Jan 11.
Article in English | MEDLINE | ID: mdl-29327311

ABSTRACT

High-quality and reproducible perovskite layer fabrication routes are essential for the implementation of efficient planar solar cells. Here, we introduce a sequential vapor-processing route based on physical vacuum evaporation of a PbCl2 layer followed by chemical reaction with methyl-ammonium iodide vapor. The demonstrated vapor-grown perovskite layers show compact, pinhole-free, and uniform microstructure with the average grain size of ~ 320 nm. Planar heterojunction perovskite solar cells are fabricated using TiO2 and spiro-OMeTAD charge transporting layers in regular n-i-p form. The devices exhibit the best efficiency of 11.5% with small deviation indicating the high uniformity and reproducibility of the perovskite layers formed by this route.

16.
Korean J Spine ; 14(3): 84-88, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29017302

ABSTRACT

OBJECTIVE: Cervical pedicle screw (CPS) placement is very challenging due to high risk of neurovascular complications. We devised a new technique (medial funnel technique) to improve the accuracy and feasibility of CPS placement. METHODS: We reviewed 28 consecutive patients undergoing CPS instrumentation using the medial funnel technique. Their mean age was 51.4 years (range, 30-81 years). Preoperative diagnosis included degenerative disease (n=5), trauma (n=22), and infection (n=1). Screw perforations were graded with the following criteria: grade 0 having no perforation, grade 1 having <25%, grade 2 having 25%-50% and grade 3 having >50% of screw diameter. Grades 0 and 1 were considered as correct position. The degree of perforation was determined by 2 junior neurosurgeons and 1 senior neurosurgeon. RESULTS: A total of 88 CPSs were inserted. The rate of correct placement was 94.3%; grade 0, 54 screws; grade 1, 29 screws; grade 2, 4 screws; and grade 3, 1 screw. No neurovascular complications or failure of instrumentation occurred. In perforated screws (34 screws), lateral perforations were 4 and medial perforations were 30. CONCLUSION: We performed CPS insertion using medial funnel technique and achieved 94.3% (83 of 88) of correct placement. And it can decrease lateral perforation.

17.
Plant J ; 90(4): 698-707, 2017 May.
Article in English | MEDLINE | ID: mdl-28112437

ABSTRACT

Plants show a rapid systemic response to a wide range of environmental stresses, where the signals from the site of stimulus perception are transmitted to distal organs to elicit plant-wide responses. A wide range of signaling molecules are trafficked through the plant, but a trio of potentially interacting messengers, reactive oxygen species (ROS), Ca2+ and electrical signaling ('trio signaling') appear to form a network supporting rapid signal transmission. The molecular components underlying this rapid communication are beginning to be identified, such as the ROS producing NAPDH oxidase RBOHD, the ion channel two pore channel 1 (TPC1), and glutamate receptor-like channels GLR3.3 and GLR3.6. The plant cell wall presents a plant-specific route for possible propagation of signals from cell to cell. However, the degree to which the cell wall limits information exchange between cells via transfer of small molecules through an extracellular route, or whether it provides an environment to facilitate transmission of regulators such as ROS or H+ remains to be determined. Similarly, the role of plasmodesmata as both conduits and gatekeepers for the propagation of rapid cell-to-cell signaling remains a key open question. Regardless of how signals move from cell to cell, they help prepare distant parts of the plant for impending challenges from specific biotic or abiotic stresses.


Subject(s)
Calcium/metabolism , Plants/metabolism , Reactive Oxygen Species/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Calcium Signaling/genetics , Calcium Signaling/physiology , Cell Communication/genetics , Cell Communication/physiology , Plant Roots/metabolism , Plasmodesmata/metabolism
18.
J Neurol Surg A Cent Eur Neurosurg ; 78(3): 286-290, 2017 May.
Article in English | MEDLINE | ID: mdl-27548012

ABSTRACT

Background The incidence of thoracic ossification of ligamentum flavum (OLF) is increasing, and the available surgical techniques were invasive. Study Aims To evaluate the surgical outcome and prognostic factors in relation to clinicoradiologic variables with a novel minimally invasive lamina fenestration technique in patients with thoracic OLF. Patients and Methods Between July 2005 and November 2010, 27 levels with 50 lesions in 17 patients were treated with the lamina fenestration technique for the decompression of thoracic OLF. This technique creates a keyhole in the lamina, preserving lower lamina bone, facet joint, and ligamentum flavum. Patient outcome was analyzed using the Japanese Orthopaedic Association (JOA) score and progression of kyphosis on simple X-ray. Results All patients were successfully treated with the laminar fenestration technique. There was one dural tear but no neural complication or injury. Mean length of follow-up was 49 months. Mean JOA score improved from 4.88 to 7 (p = 0.000). Six patients had an excellent surgical outcome; 10 had a good surgical outcome according to JOA scoring. Conclusion The lamina fenestration technique for the treatment of thoracic OLF had a successful outcome with few complications. This technique can be a minimally invasive surgical option for the treatment of thoracic OLF.


Subject(s)
Laminectomy/methods , Ligamentum Flavum/surgery , Ossification, Heterotopic/surgery , Spinal Cord Compression/surgery , Thoracic Vertebrae , Adult , Aged , Aged, 80 and over , Decompression, Surgical , Female , Follow-Up Studies , Humans , Ligamentum Flavum/diagnostic imaging , Ligamentum Flavum/pathology , Male , Middle Aged , Minimally Invasive Surgical Procedures , Ossification, Heterotopic/diagnostic imaging , Prognosis , Retrospective Studies , Spinal Cord Compression/diagnostic imaging , Spinal Cord Compression/etiology , Thoracic Vertebrae/diagnostic imaging , Treatment Outcome
19.
Plant Physiol ; 171(3): 1771-84, 2016 07.
Article in English | MEDLINE | ID: mdl-27261066

ABSTRACT

Plants exhibit rapid, systemic signaling systems that allow them to coordinate physiological and developmental responses throughout the plant body, even to highly localized and quickly changing environmental stresses. The propagation of these signals is thought to include processes ranging from electrical and hydraulic networks to waves of reactive oxygen species (ROS) and cytoplasmic Ca(2+) traveling throughout the plant. For the Ca(2+) wave system, the involvement of the vacuolar ion channel TWO PORE CHANNEL1 (TPC1) has been reported. However, the precise role of this channel and the mechanism of cell-to-cell propagation of the wave have remained largely undefined. Here, we use the fire-diffuse-fire model to analyze the behavior of a Ca(2+) wave originating from Ca(2+) release involving the TPC1 channel in Arabidopsis (Arabidopsis thaliana). We conclude that a Ca(2+) diffusion-dominated calcium-induced calcium-release mechanism is insufficient to explain the observed wave transmission speeds. The addition of a ROS-triggered element, however, is able to quantitatively reproduce the observed transmission characteristics. The treatment of roots with the ROS scavenger ascorbate and the NADPH oxidase inhibitor diphenyliodonium and analysis of Ca(2+) wave propagation in the Arabidopsis respiratory burst oxidase homolog D (AtrbohD) knockout background all led to reductions in Ca(2+) wave transmission speeds consistent with this model. Furthermore, imaging of extracellular ROS production revealed a systemic spread of ROS release that is dependent on both AtRBOHD and TPC1 These results suggest that, in the root, plant systemic signaling is supported by a ROS-assisted calcium-induced calcium-release mechanism intimately involving ROS production by AtRBOHD and Ca(2+) release dependent on the vacuolar channel TPC1.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Calcium Channels/metabolism , Calcium Signaling , NADPH Oxidases/metabolism , Salt Tolerance/physiology , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , Ascorbic Acid/metabolism , Ascorbic Acid/pharmacology , Biphenyl Compounds/pharmacology , Calcium Channels/genetics , Gene Knockout Techniques , Models, Biological , Molecular Imaging/methods , NADPH Oxidases/genetics , Onium Compounds/pharmacology , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Serum Albumin, Bovine , Stress, Physiological
20.
Annu Rev Plant Biol ; 67: 287-307, 2016 04 29.
Article in English | MEDLINE | ID: mdl-27023742

ABSTRACT

Plants integrate activities throughout their bodies using long-range signaling systems in which stimuli sensed by just a few cells are translated into mobile signals that can influence the activities in distant tissues. Such signaling can travel at speeds well in excess of millimeters per second and can trigger responses as diverse as changes in transcription and translation levels, posttranslational regulation, alterations in metabolite levels, and even wholesale reprogramming of development. In addition to the use of mobile small molecules and hormones, electrical signals have long been known to propagate throughout the plant. This electrical signaling network has now been linked to waves of Ca(2+) and reactive oxygen species that traverse the plant and trigger systemic responses. Analysis of cell type specificity in signal propagation has revealed the movement of systemic signals through specific cell types, suggesting that a rapid signaling network may be hardwired into the architecture of the plant.


Subject(s)
Calcium Signaling , Calcium/metabolism , Electricity , Plants/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...